Epidemiologic Notes and Reports

Chloroquine-Resistant Plasmodium falciparum Malaria Acquired in East Africa - Pennsylvania

On June 27, 1981, a 17-year-old American arrived in Kenya as an exchange student. He spent 1 week in Mombasa and Nairobi and then lived for the next 6 weeks in several smaller towns in western Kenya, near Lake Victoria. On June 14, he had begun malaria chemoprophylaxis with 500 mg (300 mg base) chloroquine phosphate. He continued taking 1 dose a week until July 26. He returned to the United States on August 19. On August 23, he again began chloroquine prophylaxis and continued with a weekly dose through September 20.

On September 25, 5 days after the last dose of chloroquine, he experienced onset of fever, headache, and chills. He sought medical attention on September 30, and was found to have 0.9% parasitemia with Plasmodium falciparum. A blood sample was also drawn for determination of chloroquine concentration. On the assumption that his infection represented a failure of chloroquine prophylaxis, treatment was started. It consisted of a standard therapeutic course of $2.5 \mathrm{~g}(1.5 \mathrm{~g}$ base) chloroquine phosphate plus 800 mg sulfamethoxazole and 160 mg trimethoprim twice daily for 7 days. Results of the laboratory tests subsequently showed that on September 30 (10 days after the last prophylactic dose of chloroquine), the patient's whole-blood chloroquine concentration had been $114 \mathrm{ppb}(\mathrm{ng} / \mathrm{ml})$. The patient showed rapid clinical improvement and has remained clinically well since.
Reported by FL Ruben, MD, University of Pittsburgh, M Richards, MD, J Sarandria, Allegheny County Health Dept, Pittsburgh; EJ Witte, VMD, State Epidemiologist, Pennsylvania State Dept of Health, Harrisburg; Malaria Br, Parasitic Diseases Div, Center for Infectious Diseases, CDC.
Editorial Note: In 1978, 3 P. falciparum infections acquired in Kenya and Tanzania were reported that failed to be cured by a standard (25 mg base $/ \mathrm{kg}$) course of chloroquine (1-4). Since then, an additional 7 similar cases have been documented (5-9). In each instance the infection occurred in a traveler from the United States or Europe who had acquired falciparum malaria in East Africa. Following initial supervised therapy with chloroquine $\mathbf{(2 5 ~ m g}$ base $/ \mathrm{kg}$. orally), each patient had experienced, within 7 days, a clinical cure and the clearing of malaria parasites from the blood. In all cases, however, a recrudescence of patent parasitemia occurred within 1-8 weeks, even though there had been no opportunity for reinfection. In general, this pattern of treatment failure meets the World Health Organization criteria for R-I resistance (10). These recrudescences have been treated successfully with either an increased therapeutic dosage of chloroquine or a combination of sulfonamide with dihydrofolate reductase inhibitor (Fansidar* or Bactrim/Septra).

Most persons who experienced treatment failure had also taken chloroquine prophylaxis while in Africa. Recently, 4 cases of P. falciparum malaria have been reported in persons who

[^0]
Plasmodium falciparum - Continued

had been in East Africa and who were taking, or had recently completed, chloroquine chemoprophylaxis ($5-10 \mathrm{mg} / \mathrm{kg} /$ week) (7.11,12). In each case the blood chloroquine concentration, measured at the time of diagnosis (before treatment), established failure of chloroquine prophylaxis against these P. fa/ciparum strains from East Africa.

The present case fits this pattern of chloroquine-prophylaxis failure. The chloroquine concentration, 114 ppb , is consistent with a history of appropriate prophylaxis and would be expected to suppress chloroquine-sensitive strains of P. falciparum (13).

In the past year, $C D C$ has received reports of 8 other U.S. travelers to East Africa, in addition to the present case, who have experienced failure of chloroquine therapy or prophylaxis associated with documented P. falciparum infection. The countries now known to be involved are Kenya, Madagascar, Tanzania, and the Comoro Islands. The epidemiologic and parasitologic features of these cases are consistent with the pattern established in the other reported cases. However, because of delayed notification, not all critical elements of case descriptions. such as quantification of blood chloroquine, have been available.

At present, chloroquine continues to be a relatively safe and effective antimalarial for prophylaxis in East Africa. Since the prevalence of chloroquine-resistant P. falciparum in that area remains unknown and the degree of resistance is low, it is unclear whether current recommendations for chloroquine prophylaxis for travelers to East Africa need to be altered. CDC is maintaining intensive surveillance for failure of chloroquine prophylaxis and treatment. As additional information on this evolving situation becomes available, it will be reported. CDC can provide in vitro drug-sensitivity testing and determine blood chloroquine concentrations and would like to receive reports through state health departments of all suspected cases of chloroquine-resistant P. falciparum malaria acquired in Africa.

References

1. CDC. Chloroquine-resistant malaria acquired in Kenya and Tanzania-Denmark, Georgia, New York. MMWR 1978;27:463-4.
 Trans R Soc Trop Med Hyg 1979;73:228-9.
2. Kean BH. Chloroquine-resistant falciparum malaria from Africa. JAMA 1979;241:395.
3. Campbell CC, Chin W, Collins WE, Teutsch SM, Moss DM. Chloroquine-resistant Plasmodium falciparum from East Africa: cultivation and drug sensitivity of the Tanzania 1/CDC strain from an American tourist. Lancet 1979;2:1151-4.
4. Stille W. Chloroquin-resistente Malaria tropica nach Kenia-Reise. Dtsch Med Wochenschr 1979;104:954-5.
5. Faehlmann M, Rombo L, Hedman P. Serum concentrations of chloroquine in a patient with a late recrudescence of Kenyan Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg 1981:75:362-4.
6. Pettersson T, Kyrönseppä H, Pitka̋nen T. Chloroquine-resistant falciparum malaria from East Africa. Trans R Soc Trop Med Hyg 1981;75:112-3.
7. Aronsson B, Bengtsson E, Björkman A, Pehrson PO. Rombo L, Wahlgren N. Chloroquine- resistant falciparum malaria in Madagascar and Kenya. Ann Trop Med Parasitol 1981;75: 367-73.
8. Eichenlaub D, Pohle HD. Ein Fall von Falciparum-Malaria mit Chloroquin-Resistenz (R1) von den ostafrikanischen Komoren-Inseln. Infection 1980;8:90-2.
9. World Health Organization. Chemotherapy of malaria and resistance to anti-malarials. Geneva: World Health Organization, 1973. (Tech. Report Series No. 529).
10. Gardner AL, Weinstein RA, Lincoln LJ. Failure of chloroquine prophylaxis in Plasmodium falciparum from East Africa. JAMA 1981;246:979-80.
11. Bengtsson E, Björkman A, Brohult J, et al. Malaria prophylaxis when visiting areas of East Africa with chloroquine resistance. Lancet 1981;2:249.
12. Staiger MA, Nguyen-Dinh P. Churchill FC. Sensitive high-performance liquid chromatographic analysis for chloroquine in body fluids: application to studies of drug resistance in Plasmodium falciparum. J Chromatography 1981;225:139-49.

Current Trends

The Cost of One Rabid Dog - California

On May 10, 1980, a dog in Yuba County, California, was placed under observation after it bit 3 persons in a parking lot in the Olivehurst area. Because the dog appeared ill, it was killed, and tissues were tested and found positive for rabies on May 12. The subsequent investigation by Sutter-Yuba County Health Department personnel eventually resulted in the identification of 70 persons, who received antirabies prophylaxis because of known or probable exposure to the dog. Because investigators found that only 20% of the dogs and cats in the area had up-to-date vaccinations, special clinics were held in which 2,000 dogs were vaccinated; over 300 unclaimed dogs and cats were destroyed.

No persons or other animals were known to develop rabies as a result of this episode. However, the costs generated by this single rabid dog were estimated as: $\$ 92,650$ for human antirabies treatment, $\$ 4,190$ for animal vaccination and veterinary services, and $\$ 8,950$ for health-department and animal-control programs. The total cost of the episode was $\$ 105,790$, or over $\$ 1,500$ per person treated, not including lost work time, patient travel time, and costs of the 6 months' quarantine imposed on animals exposed to the rabid dog.
Reported by MK Cusick, MD, Sutter-Yuba County Health Dept, G Humphrey, DVM, Dept of Health Svcs, California; Viral Diseases Div, Center for Infectious Diseases, CDC.
Editorial Note: There have been few reports in the literature in which costs could be assigned to 1 specific case of rabies. Although human rabies has become a rarity in the United States-0-5 cases per year-the cost of controlling the disease is an increasing burden on health budgets.

Epidemiologic Notes and Reports

Food-Borne Illness due to Inadvertent Consumption of Marijuana - California

On July 10, 1981, health officials in San Bernardino County, California, were notified of a possible food-borne outbreak associated with a covered-dish brunch at a local college. Fifteen persons who ate at the brunch were interviewed. Nine complained of illness, which involved at least 2 of the following symptoms: dry mouth (9), dizziness (7), tachycardia (5), blurred vision (5), memory lapse (5), "tingling" (3), anxiety (3), confusion and drowsiness (3), nausea (1), and headache (1). The age groups of ill persons were as follows: 20-29 years old, 1 person; 30-39 years old, 3 persons; 40-49 years old, 2 persons; and $50+$ years old, 3 persons. The mean incubation period was 1.1 hours (range, 50 minutes to 2 hours); the median duration of illness was 3 hours. The 3 persons hospitalized for observation were released within 24 hours.

A standard questionnaire was administered to the 15 persons, and food-specific attack rates implicated a zucchini cake as the common source of illness. The preparer of the cake, when questioned, admitted to the possibility of having inadvertently added marijuana to the recipe.

Microscopic examination of the zucchini cake showed cystolithic hairs (indicating plant cell-wall material), and a Duquenois-Levine test for cannabinoids confirmed the presence of marijuana in the cake.

Food-Borne IIIness - Continued

Reported by AF Taylor, MPH, JJ Kalnas, LE Mahoney, MD, DrPH, San Bernardino County Dept of Public Health, California; Special Studies Br, Chronic Diseases Div, Center for Environmental Health, CDC.
Editorial Note: A similar episode occurred in Colorado in 1978 in which 9 of 22 persons exposed to marijuana in a bundt cake became ill(1).

The symptoms described in the present outbreak are physiologically consistent with the effects of marijuana (2). Tolerance to marijuana is well substantiated (3), and persons with repeated experience with the substance may have less pronounced physiologic (as well as psychologic) changes. Furthermore, persons who deliberately use marijuana for its psychologic effects would experience and interpret such "symptoms" differently than described herein.

Marijuana, obtained from the hemp plant Cannabis sativa, is a complex mixture of over 400 chemicals. Delta-9-tetrahydrocannabinol (THC) is the major source of psychoactivity, but there are numerous cannabinoids that have biological activity. THC is 3-5 times as potent when inhaled as when ingested, because it is insoluble in water at room temperature and its composition is altered by the acid pH of the stomach. However, the fatty substances in baked foods facilitate absorption and the production of a pharmacologically active dose (3). Because the composition of marijuana is varied and the absorption is incomplete, the onset and duration of symptoms may vary also. Symptoms usually begin from $1 / 2$ to 1 hour after ingestion and last from 3 to 6 hours (4). THC leaves the blood rapidly but is taken up by the tissues. Complete elimination of a dose may take up to 30 days.
(Continued on page 533)
TABLE 1. Summary - cases of specified notifiable diseases, United States
(Cumulative totals include revised and delayed reports through previous weeks.)

DISEASE	42nd WEEK ENDING		$\begin{gathered} \text { MEDIAN } \\ 1976.1 \mathrm{BRO} \end{gathered}$	CUMULATIVE, FIRST 42 WEEKS		
	$\begin{gathered} \text { Octahar } 24 \\ 1981 \end{gathered}$	$\text { Octahar } 18$ 1880		$\begin{gathered} \text { Otahar } 24 \\ 1981 \end{gathered}$	$\begin{gathered} \text { Octahar } 18 \\ 1980 \end{gathered}$	$\begin{gathered} \text { MEDIAN } \\ 19761980 \end{gathered}$
Aseptic meningitis	270	245	245	7.449	5.980	5,135
Brucallosis	6	1	3	130	146	. 146
Chickenpox	927	671	886	170.856	160.551	160,551
Diphtheria	-	-	-	3	2	63
Encephalitis: Primary (arthropod-borne 8 unspec.)	29	38	38	1,117	952	952
Post-infectious	-	2	3	72	173	186
Hepatitis, Viral: Type ${ }^{\text {a }}$	400	319	319	16.430	14,349	12,141
Type A	523	494	629	20,109	22,604	24,046
Type unspecified	215	206	155	8,840	9, 208	7.093
Malaria	27	33	15	1.140	1,644	605
Measles (rubeola)	18	38	110	2,750	13,059	24.545
Meningococcal infections: Total	48	39	29	2,848	2,199	1.978
Civilian	48	39	27	2,837	2.183	1,954
Milizary	-		1	11	16	17
Mumps	102	69	153	3.505	7.461	14,037
Pertussis	27	42	39	993	1.398	1,398
Ruballa (German measles)	24	29	68	1,850	3,417	10.968
Tetanus	3	-	1	48	67	60
Tubarculosis	567	520	556	21.908	21.853	23,467
Tularamia	7	2	3	214	183	137
Typhoid fever	22	14	13	481	423	414
Typhus fevar, tick-borne (Rky. Mt. spotted)	9	5	13	1.125	1.090	990
Venereal diseases: Gonormea: Civilian	20.495	17.974	21,518	812.582	807,241	807. 241
Military	20.438	465	514	22.575	22.390	22.390
Syphilis, primary ${ }^{\text {a }}$ secondary: Civilian	689	556	556	24.758	21.470	19,585
Military	7	5	5	314	256	248
Rabies in animals	104	109	75	5,911	5,341	2,578

TABLE II. Notifiable diseases of low frequency, United States

	CuM. 1881		CUM. 1981
Anthrax	-	Poliomyelitis: Total	6
Botulism(Ariz. 1, Calif. 2)	64.	Paralytic (Mo. 1, Minn. 1)	5
Cholara	3	Psittacosis	88
Congenital rubella syndrome	10	Rabies in man	1
Leprasy (Wash. 1. Calif. 1)	206	Trichinosis	115
Leptospirosis (Tex. 1)	38	Typhus fevar, flea-borne (endemic, murina)	31
Plague	9		

[^1]TABLE III. Cases of specified notifiable diseases, United States, weeks ending
October 24, 1981 and October 18, 1980 (42nd week)

REporting area	ASEPTIC MENIN. GITIS	8RUCEL. Losis	CHICKENPOX	DIPHTHERIA		ENCEPHALITIS			HEPATITIS (VIRAL), BY TYPE			MALARIA	
						Primary		Pastinfectious	B	A	Unspecified		
	1981	1981	1981	1981	cum.	1981	1980	1981	1981	1981	1981	1981	$\begin{aligned} & \hline \text { CuM. } \\ & 1981 \end{aligned}$
UNITED STATES	270	6	927	-	3	29	38	-	400	523	215	27	1.140
NEW ENGLAND	10	1	112	-	-	2	-	-	23	9	19	1	60
Maine	-	-	43	-	-	-	-	-	2	-	-	-	1
N.H.	-	-	-	-	-	-	-	-	-	2	-	-	3
V .	-	-	4	-	-	-	-	-	-	-	-	-	6
Mass.	9	-	28	-	-	2	-	-	4	2	13	-	31
R.I.	-	1	1	-	-	-	-	-	3	2	-	-	3
Conn.	1	-	36	-	-	-	-	-	14	3	6	1	16
MID. ATLANTIC	33	-	40	-	=	2	2	-	64	54	18	1	147
Upstate N.Y.	13	-	30	-	-	-	1	-	15	12	3	-	34
N.Y. City	4	-	10	-	-	1	-	-	19	16	3	1	56
N.J.	7	-	NN	-	-	-	1	-	30	26	12	-	42
Pa .	9	-	-	-	-	1	1	-	NA	NA	NA	-	15
E.N. CENTRAL	66	-	380	-	-	15	11	-	40	61	16	1	53
Ohio	47	-	35	-	-	14	6	-	19	13	7	-	8
Ind.	4	-	47	-	-	1	1	-	2	7	4	-	6
III.	-	-	49	-	-	-	1	-	4	20	2	-	17
Mich.	15	-	155	-	-	-	1	-	15	21	3	1	22
Wis.	-	-	94	-	-	-	2	-	-	-	-	-	-
W.N. CENTRAL	24	1	130	-	-	3	4	-	6	4	7	-	31
Minn.	6		3	-	-	3	2	-	2	2	-	-	12
lowa	4	1	47	-	-	-	1	-	-	-	1	-	4
Mo.	6	-	1	-	-	-	1	-	3	1	6	-	3
N. Dak.	-	-	-	-	-	-	-	-	-	-	-	-	1
S. Dak.	3	-	9	-	-	-	=	-	-	1	-	-	1
Nebr.	-	-	14	-	-	-	-	-	1	-	-	-	2
Kans.	5	-	56	-	-	-	-	-	-	-	-	-	8
S ATLANTIC	47	2	146	-	1	1	6	-	87	67	25	4	139
Del.	,	2		-	-	-	-	-	1		3	-	1
Md.	-	-	7	-	-	1	4	-	9	4	6	1	34
D.C.	-	-	-	-	-	-	-	-	3	1	1	-	9
Va .	14	1	4	-	-	-	1	-	18	7	4	2	29
W. Va.	3		97	-	-	-	1	=	4	1	1	-	4
N.C.	5	-	NN	-	-	-	-	-	3	3	1	1	12
s.c.	1	-	-	-	-	-	-	-	10	4	-	-	2
Ga.	2	1	-	-	-	-	-	-	11	16	-	=	8
Fla.	22		38	-	1	-	-	-	28	31	9	-	40
E.S. CENTRAL	23	-	3	-	-	3	2	-	20	18	4	-	10
Ky.	3	-	1	-	-	1		-	2	1	-	-	-
Tenn.	16	-	NN	-	-	1	1	-	15	15	1	-	-
Ala.	-	-	-	-	-	1	1	-	2	1	3	-	9
Miss.	4	-	2	-	-	-	-	-	1	1	-	-	1
W.S. CENTRAL	19	2	47	-	-	2	9	-	43	129	65	1	88
Ark.	-	1	-	-	-	-	-	-	4	4	1	-	4
Le.	3	-	NN	-	-	-	5	-	16	39	10	1	8
Okla.	3	-	-	-	-	-	-	-	3	4	4	1	6
Tox.	13	1	47	-	-	2	4	-	20	82	50	-	70
	9	-	8	-	1	1	1	-	8	46	13	2	40
Mant.	1	-		-	1	-	-	-	2	2	-	-	1
Idaho		-	-	-	-	-	-	-	-	4	-	1	4
Wyo.	-	-	-	-	-	-	-	-	-	1	-	-	-
Calo.	5	-	-	-	-	-	-	-	3	17	4	1	19
N. Mex.	1	-	-	-	-	-	-	-	-	6	-	-	3
Arix.	1	-	NN	-	-	1	-	-	2	8	3	-	6
Utah	1	-	-	-	-	-	1	-	-	5	4	-	4
Nev.	-	-	8	-	-	-	-	-	1	3	2	-	3
PACIFIC	39	-	61	=	1	-	3	-	109	135	48	17	572
Wash.	1	-	54	-	-	-	-	-	8	12	1	17	25
Orag.	1	-		-	-	-	-	-	5	12	4	-	55
Calif.	30	-	4	-	-	-	3	-	91	111	41	15	520
Alaska	-	-	-	-	1	-		-	1	I	2	2	3
Hawaii	8	-	3	-	-	-	-	-	4	-	-	-	9

NN: Not notifiable.
All delayed reports and corrections will be included in the following week's cumulative totals.

TABLE III (Cont.'d). Cases of specified notifiable diseases, United States, weeks ending October 24, 1981 and October 18, 1980 (42nd week)

REPORTING AREA	Measies (Rubeola			MENINGOCOCCAL INFECTIONS TOTAL			MUMPS		PERTUSSIS	RUBELIA		$\frac{\text { TETANUS }}{\substack{\text { CUM. } \\ 1981}}$
	1881	$\begin{aligned} & \text { CUM } \\ & 1981 \end{aligned}$	$\begin{aligned} & \text { CUM. } \\ & 1880 \end{aligned}$	1981	CUM. 1981	CUM. 1980	1981	CUM. 1981	1981	1881	CUM. 1981	
UNITED STATES	18	2,750	13,059	48	2,848	2,199	102	3,505	27	24	1,850	48
NEW ENGLAND	-	86	675	3	185	119	3	176	1	-	121	2
Maine	-	5	33	1	23	5	1	34	-	-	33	-
N.H.	-	7	331	-	17	7	-	22	-	-	51	-
Vt.	-	3	226	1	8	14	-	6	-	-	-	-
Mass.	-	61	58	-	60	41	-	47	1	-	25	-
R.I.	-	-	2	1	17	9	1	23	-	-	-	-
Conn.	-	10	25	-	60	43	1	44	-	-	12	2
MID. ATLANTIC	1	830	3.806	9	405	376	13	597	8	5	224	4
Upstata N.Y.	1	216	696	3	132	115	6	124	5	4	109	1
N. Y. City	-	87	1.192	1	65	96	1	81	-	-	54	3
N.J.	-	58	837	1	90	81	1	90	1	1	48	-
Pa.	-	469	1.081	4	118	84	5	302	2	-	13	-
E.N. CENTRAL	-	81	2,442	5	342	284	36	979	2	2	375	9
Ohio	-	16	380	1	130	81	13	168	-	-	3	2
Ind.	-	9	92	1	46	42	2	113	-	-	132	2
III.	-	23	348	1	80	83	10	190	-	-	89	-
Mich.	-	30	247	2	81	62	-	324	1	1	35	3
Wis.	-	3	1.375	-	5	16	3	184	1	1	116	2
W.N. CENTRAL	-	9	1.337	7	132	82	14	205	2	-	77	3
Minn.	-	2	1,102	-	46	18	-	8	-	-	6	2
Iowa	-	1	20	3	24	11	8	62	-	-	4	-
Mo.	-	1	65	1	39	38	2	20	-	-	2	1
N. Dak.	-	-	-	-	2	1	-	-	-	-	-	-
S. Dak.	-	-	-	2	7	5	-	1	2	-	-	-
Nabr.	-	4	83	-	-	5	-	3	2	-	1	-
Kans.	-	1	67	1	16	9	4	111	-	-	64	-
S. ATLANTIC	5	445	1.960	12	656	521	17	506	4	2	143	8
Del.		-	3		4	2	-	10	-	-	1	-
Md.	-	5	83	-	45	46	2	91	-	-	1	-
D.C.	-	1	$=$	1	4	2	-	3	-	-		-
Va .	-	9	338	6	86	50	3	125	-	1	13	-
W. Ve	-	9	9	-	24	18	1	83	-	-	22	-
N.C.	-	3	130	1	96	92	2	20	1	-	5	2
S.C.	-	2	159	-	82	58	1	16	-	-	8	2
Ga.	$\overline{-}$	112	826	1	108	92	-	38	-	-	37	1
Fla.	5	304	412	3	207	161	8	120	3	1	56	3
E.S. CENTRAL	-	5	331	2	201	186	1	82	1	1	38	2
Ky.	-	1	55	2	58	58	1	41	-	1	22	-
Tenn.	-	2	170	-	56	50	-	21	1	-	15	-
Ala.	-	2	22	-	62	51	-	16	-	-	1	2
Miss.	-	2	84	-	25	27	-	4	-	-	-	-
W.S. CENTRAL	7	882	951	3	447	240	3	209	-	3	168	11
Ark.	1	22	16		26	18	1	6	-	-	3	3
Ls.	-	4	11	-	109	90	-	5	-	-	9	2
Okla.	1	7	775	2	39	18	-	-	-	1	2	1
Tax.	5	849	149	1	273	114	2	198	-	2	154	5
MOUNTAIN	-	35	473	3	118	89	4	125	3	1	91	2
Mont	-	-	2	$=$	9	3	1	11	-	-	4	2
Idatio	-	1	-	2	6	4	-	6	-	-	3	-
Wyo.	-	1	-	1	2	3	-	1	2	-	11	-
Colo.	-	10	24	-	42	25	-	45	-	-	27	-
N. Max.	-	8	12	-	7	10	-	-	1	-	5	-
Ariz.	-	5	379	-	20	15	3	32	-	1	21	1
Utah	-	-	47	-	5	6	-	17	-	-	8	1
Nov.	-	10	9	-	27	23	-	13	-	-	12	
PACIFIC	5	377	1,084	4	362	302	11	626	6	10	613	7
Wach.		3	177	2	64	53	3	148	6		89	
Orag.	-	5	-	-	51	50	2	64	-	-	51	-
Calit.	5	362	895	2	232	190	2	371	6	10	461	7
Alaska	-		6	-	11	9	4	15	-	-	1	-
Hawaii	-	7	6	-	4	9	-	22	-	-	11	-
Guam	Na	5	6	-	-	1	NA	6	NA	NA	1	
P.R.	-	283	160	-	11	9	1	140	Na	NA	4	$5 *$
V.I.	-	25	6	-	1	1	-	5	-	-	1	
Pac. Trust Test.	Na	1	12	-	-	-	NA	15	HA	VA	1	-

NA: Not available.
All delayed reports and corrections will be included in tha following week's cumulative totals.

TABLE III (Cont.'d). Cases of specified notifiable diseases, United States, weeks ending October 24, 1981 and October 18, 1980 (42nd week)

REPORTING AREA	tuberculosis		$\begin{array}{\|c\|} \hline \begin{array}{l} \text { TULA. } \\ \text { fEMIA } \end{array} \\ \hline \text { CUM. } \\ \hline 1991 \\ \hline \end{array}$	TYPHOID FEVER		$\left\|\begin{array}{c}\text { TYPHUS FEVER } \\ \text { (Tick- Gorne) } \\ \text { (RMSF) }\end{array}\right\|$		Venereal diseases (Civilian)						RABIES (in Animals) CUM. 1981		
			gonorrhea			SYPHILIS (Pri. \& Sec.)										
	1891	$\begin{aligned} & \text { CUM. } \\ & 1961 \end{aligned}$		1981	$\begin{aligned} & \hline \text { CUM. } \\ & 1981 \\ & \hline \end{aligned}$			1981	$\begin{aligned} & \hline \text { CUM. } \\ & 1981 \\ & \hline \end{aligned}$	1981	$\begin{aligned} & \hline \text { CUM. } \\ & \text { 1981 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CUM } \\ & 1980 \end{aligned}$	1881		$\begin{aligned} & \text { CUM. } \\ & \text { 1981 } \end{aligned}$	$\begin{aligned} & \text { CUM. } \\ & 1980 \end{aligned}$
UNITED STATES	567	21,908		214	22	481	9	1,125	20,495	812,582	807, 261	689	24, 758	21.470	5.911	
NEW England	16	627	3	-	16	-	9	472	20.191	20,446	15	483	418	39		
Maine	1	42	-	-	1	-	-	42	1.063	1,178		5	5	13		
N.H.	-	18	-	-	-	-	-	18	716	719	-	11	4	7		
$\mathrm{VL}_{\text {Mase }}$	14	20	1	-	-	-	5	11	347	467		15	5	-		
Mass.	14	359	1	-	8	-	5	179	8,380	8.608	12	309	246	11		
R.I.	-	46	-	-	-	-	2	22	1.176	1,315	3	29	27	2		
Conn.	1	142	1	-	7	-	2	200	8,509	8,159		114	131	6		
MID. ATLANTIC	107	3.411	10	5	74	-	40	2.396	98,045	89,111	83	3,572	2,997	100		
Upstate N.Y.	12	607	10	1	13	-	14	576	16,857	16.277	17	, 325	266	70		
N.Y. City	42	1,286		2	40	-	3	850	40,490	34,517	44	2,141	1,940			
	18	736	-	2	13	-	10	528	18,424	16,411	8	510	364	21		
Pa.	35	782	-	-	8	-	13	442	22,274	21,906	14	596	427	8		
E.N. CENTRAL	92	2,977	5	1	36		49	2,812	120,424	124,963	65	1.826	2,021	782		
Ohio	6	541	-	1	10		39	1.282	38,645	33, 294	20	252	308	62		
Ind.	11	343	4	-	2	-	3	189	10.404	12,477	2	239	152	84		
1 II	38	1,212	-	-	15	-	6	355	33,562	39, 131	37	956	1,156	496		
Mich.	33	724	1	-	7	-	1	709	26,660	28,462	5	302	327	14		
Wis.	4	157	-	-		-	-	271	11,153	11,599	1	77	78	126		
W. N. CENTRAL Minn.	20	752	32	-	18	-	50	1,171	38,959	38,309	20	543	290	2,352		
Minn. lowa	2	129	-	-	2	-	2	270	5,993	6, 259	2	166	99	409		
Mo.	12	71 349	26	-	3 8	E	$2{ }^{7}$	205 388	4,276	4.130	15	24	23	164		
N. Dak.	12	28	26	-	$-$	-	26	368 13	18,172 489	16,802 550	15	306 8	136 3	214 335		
S. Dak.	3	56	1	-	1	-	-	17	1,052	1,134	E	2	3 4	335 278		
Nubr.	3	23	3	-	2	-	3	84	2,881	2,966	-	9	7	172		
Kans.	-	96	2	-	2	-	12	194	6.096	6.468	-	28	18	180		
S. ATLANTIC Del.	118	4,721	13	-	60	$\underline{2}$	643 3	4.500	199.628 3.178	202,427	185	6,621	5.187	521		
Md.	4	487	$\underline{-}$	-	14	-	58	68 639	3,178 $\mathbf{2 3 , 5 8 8}$	2,848 21,704	4	13 479	356	4		
D.c.	3	282	-	-	1	-	1	248	23, 11.2889	13,988	12	479 538	356 388	43		
Va.	12	480	3	-	1	-	105	544	18,383	18,321	13	571	461	111		
W. Va.	3	149	-	-	6	-	6	62	3,028	2,718	3	21	15	25		
N.C.	29	828	2	-	5	2	287	759	30,940	30,005	10	519	386	18		
${ }_{\text {S.c. }}^{\text {Ga }}$	9	436	3	-	1	-	101	348	19,263	19,064	19	463	304	40		
$\underset{\mathrm{Ga}}{\mathrm{Ga}}$	21	778	4	-	4	-	72	1.069	41,546	39,514	41	1,637	1,492	195		
Fla.	36	1,227	-	-	28	-	10	763	48,413	54,265	83	2,380	1,771	88		
E.s. central	45	1,950	10	1	8	3	132	1.852	67,788	65,804	51	1,622	1,772	405		
KY.	8	476	3	-	-	-	2	189	8,346	9,700	4	+822	111	114		
Tenn.	19	658	7			2	82	692	25,624	23, 877	22	595	741	193		
Ala	10	534	-	1	3	1	21	630	20,750	19,317	19	480	391	94		
Miss.	8	282	-	-	2	-	27	341	13,070	12,910	6	465	529	4		
W.S. CEntral	57	2,473	97	11	124	1	167	3,200	107.897	101,700	151	5,943	4.328	966		
Ark.	11	278	51	-	4	-	38	168	8,389	8, 098	-	126	173	134		
${ }_{\text {Okla }}^{\text {La }}$	-	441	5	-	2	1	1	550	18.778	18.585	28	1.350	1,089	33		
Okla.	7	272	26	-	4	-	94	329	11.623	10.237	3	133	85	190		
Tex.	37	1,482	15	11	114	-	34	2.153	69,107	64.788	120	4,334	2.981	609		
MOUNTAIN	3	596	35	1	23	-	28	872	31,851	31,220	17	613	506	238		
Mont.	2	30	5	-	4	-	12	24	1.168	1.177	,	11	2	111		
Idaho	-	8	4	-	-	-	5	45	1,473	1.323	1	18	16	7		
Wyo.	-	9	1	-	-	-	5	33	803	910	-	10	11	17		
Colo.	-	71		-	8	-	1	192	8.354	8,468	3	181	136	35		
N. Mex.	1	117	3	-	-	-	-	122	3,537	3. 776	2	107	85	27		
Ariz.		273	-	1	10	-	-	258	9,551	8, 420	7	157	176	25		
Utah	-	47	13	-	1	-	2	37	1,586	1,568	-	23	13	11		
Nev.	-	41	1	-	-	-	3	161	5.419	5.578	4	106	67	5		
PACIFIC	109	4.401	9	3	122	-	7	3.220	127.799	133.253	102	3,535	3,951	508		
Wash.	9	313	1	-	3	-	1	239	10.443	11, 389	2	131	204	15		
Oreg.	-	153	1	-	4	-	-	186	7.651	9, 194	4	90	91	9		
Calit.	93	3,747	7	3	111	-	6	2.683	103.895	106,831	96	3.244	3.515	468		
Alaska Hawaii	$=$	48	-	-	-	-	-	81	3,290	3,212		12	8	16		
Hawaii	7	140	-	-	4	-	-	51	2,520	2,627	2	58	133	-		
Guam	Na	28	-	na	-	NA	-	Na	72	105		-	5	-		
P.R.	3	360	-	,	4	N		71	2,627	2,201	13	542	497	63		
V.I.	-	1	-	-	6	-		4	198	108	-	17	10			
Pac. Truist Terr.	va	49	-	Na	-	NA	-	NA	329	338	NA	-	-	-		

NA: Not available
All delayed reports and corrections will be included in the following week's cumulative totals

TABLE IV. Deaths in 121 U.S. cities," week ending
October 24, 1981 (42nd week)

REPDRTING AREA							$\text { P\& } I^{\prime=}$TOTAL	feporting AREA							$\begin{aligned} & \text { P\& } 1^{A 4} \\ & \text { TOTAL } \end{aligned}$
	$\begin{gathered} \text { ALL } \\ \text { AGES } \end{gathered}$	$\geqslant 65$	45.64	25.44	1.24	<1			$\underset{\text { AGES }}{\text { ALL }}$	$\geqslant 65$	45-64	25.44	1.24	<1	
NEW ENGLAND	654	460	127	37	12	18	36	S. ATLANTIC	1,414	870	345	106	50	43	47
Boston, Mass.	164	103	33	14	4	10	13	Atlanta, Ga.	135	80	36	10	2	7	-
Bridgeport, Cann.	66	42	15	4	1	4	6	Baltimore, Md.	342	220	80	21	15	6	10
Cambridge, Mass.	26	17	4	5	-	-	-	Charlotte, N.C.	74	43	17	4	8	2	1
Fall River, Mass.	27	17	9	1	-	-	-	Jacksanville. Fla	105	70	20	11	2	2	5
Hartiord, Conn.	58	41	12	3	1	1	2	Miami, Fla.	87	56	21	6	1	3	2
Lowell, Mass.	31	23	6	1		-	2	Norfolk, Va.	46	26	13	2	2	3	5
Lynn, Mass.	21	13	6	1	1	-	1	Richmond, Va.	94	54	25	8	2	5	5
New Bedford, Mass.	31	23	9	-	-	-	2	Savannah, Ga.	57	34	12	5	4	2	5
New Haven, Conn.	51	36	12	2	-	1	6	St. Paters burg, Fla.	97	76	16	1	1	3	3
Providence, R.I. ${ }^{\text {s }}$	39	39	-	-	-	-	1	Tampa, Fle	78	50	20	5	1	2	6
Somerville, Mass.	7	6	1	-	-	-	-	Washington, D.C.	252	135	69	32	9	7	2
Springfield, Mass.	52	37	9	4	1	1	1	Wilmington, Del.	47	26	16	1	3	1	3
Watarbury, Conn.	25	24	1	-	-	-	2								
Worcestar, Mass.	56	39	11	2	3	1	-								31
								E.S. CENTRAL Birmingham, Ala.	$\begin{array}{r} 652 \\ 97 \end{array}$	385 53	$\begin{array}{r} 198 \\ 33 \end{array}$	36 4	13	20 3	3
MID. ATLANTIC	2,640	1,700	587	206	67	79	105	Chattanooga, Tenn.	44	23	16	4	-	1	5
Albany, N.Y.	54	36	12	6	-	-	1	Knoxville, Tenn.	50	34	12	1	1	2	1
Alentown. Pa .	22	19	3	-	-	-	2	Louisville, Ky.	126	78	30	10	1	7	12
Buffalo, N.Y.	100	68	22	5	3	2	14	Memphis, Tenn.	158	93	54	7	3	1	3
Camden, N.J.	28	13	10	2	1	1	-	Mobils, Ala.	22	13	9	$\overline{7}$	-	$\overline{2}$	2
Elizabeth, N.J.	40	31	7	1	1	-	-	Montgomary. Ala.	35	18	13	8	$\overline{4}$	4	3
Erie, Pa- ${ }^{+}$	52	34	15	1	1	1	4	Nashville, Tenn.	120	73	31	8	4	4	3
Jersay City, N.J.	55	38	10	3	2	2	2								
N.Y. City. N.Y.	1.497	963	320	115	41	49	42								
Nawark, N.J.	75	44	17	10	2	2	3	W.S. CENTRAL	1,418	769	368	138	74	69	
Paterson, N.J.	43	19	8	6	7	3	3	Austin, Tex.	38	17	15	5	1	-	6
Philadelphia, Pa. \dagger	211	123	52	24	5	7	12	Baton Rouga, La	33	17	8	2	3	3	3
Pitsburgh, Pa. ${ }^{\text {a }}$	10	38	18	10	1	3	2	Corpus Christi, Tex.	61	35	14	5	4	3	,
Aeading, Pa	39	31	7	1	-	-	6	Dallas, Tex.	212	117	54	21	11	9	1
Pochester, N.Y.	115	86	20	6	-	3	5	El Paso, Tex.	53	30	19	1	1	2	1
Schenectady, N.Y.	32	23	6	2	1	-	3	Fort Worth, Tex.	102	65	15	13	3	6	11
Scranton, Pa. ${ }^{\text {P }}$	22	17	4	-	1	-	1	Houston, Tex.	383	170	118	55	35	5	2
Syracuse, N.Y.	97	55	29	7	1	5	3	Little Rock, Ark.	74	50	19	2	2	1	-
Tranton, N.J.	32	25	5	1	-	1	1	New Orleans, La.	168	96	40	12	4	16	1
Utics, N.Y.	23	15	6	2	-	-	-	San Antonio, Tex.	162	93	39	14	4	12	7
Yonkers, N.Y.	33	22	7	4	-	-	1	Shroveport, La. Tulsa, Okla.	45 87	22	116	3 5	1	8	1
E.N. CENTRAL	2.335	1.453	605	125	72	80	65								
Akron, Ohio	51	37	9	2	1	2	-	MOUNTAIN	610	374	128	50	27	31	22
Canton, Ohia	42	30	11	-	$\stackrel{-}{1}$	1	5	Albuquerque, N. Mex.	75	53	9	7	3	4	5
Chicago. III.	563	348	132	36	19	28	15	Colo. Springs, Colo.	30	21	5	1	1	2	1.
Cincinnati. Ohio	142	88	39	9	4	2	2	Denver, Colo.	122	62	29	15	7	9	2
Cleveland, Ohio	158	86	52	8	4	8	1	Las Vegas, New.	59	33	15	9	1	,	3
Columbus. Ohio	129	76	33	9	7	4	6	Ogden, Ulah	25	14	6	1	2	2	-
Dayton, Ohio	145	99	38	4	2	2	1	Phoenix, Ariz.	130	80	33	4	7	6	2
Datroit, Mich.	259	157	64	17	12	9	4	Puablo, Colo.	26	18	3	5	2	5	2
Evansville, Ind.	54	33	14	4	1	2	-	Salt Lake City. Utah	58	35	13	5	2	5	1
Fort Wayne, Ind.	45	25	18	-		2	6	Tucson, Ariz.	85	58	16	5	4	2	6
Gary. Ind.	43	22	16	4		1	1								
Grand Rapids. Mich.	61	37	18	3	2	1	4								
Indianapolis, Ind.	133	78	36	6	7	6	2	PACIFIC	1,692	1.071	388	109	57	67	62
Madison, Wis.	36	26	6	2	2	-	5	Berkelay, Calit.	22	15	20	-	1	-	
Milwaukee. Wis.	165	113	40	5	5	2	-	Frasno, Calit.	85	56	20	4	4	1	5
Paoria, 111.	28	14	12	1	-	1	2	Glendale, Calif.	33	21	10	7	1	1	3
Rockford, III.	53	40	12	1	-	-	2	Honolulu, Hawaii	45	20	14	7	1	3	3
South Bend, Ind.	57	37	14	3	2	1	3	Long Beach, Calif.	109	72	24	6	4	3	5
Toledo. Ohia	98	51	26	5	4	6	4	Los Angales, Calif.	502	314	118	30	16	24	16
Youngrtown, Ohio	73	50	15	6	-	2	2	Oakland. Calif.	62	40	13	5	1	3	1
								Pasadena, Calif.	39	30	5	2	2	-	3
								Portland, Oreg.	102	72	23	2	1	4	-
W.N. CENTRAL	704	446	164	42	16	35	30	Sacramento, Calif.	64	36	14	7	3	4	6
Des Moines, Iowa	45	30	9	1	2	3	2	San Diego, Calif.	94	58	24	6	2	4	4
Duluth, Minn.	25	19	5	-	-	1	6	San Francisco, Calif.	146	92	31	13	3	7	4
Kansas City, Kans.	29	19	7	2	-	-	1	San Jose, Calif.	174	109	43	11	7	4	14
Kansas City, Mo.	132	79	35	7	1	10	3	Seattle, Wash.	121	84	19	8	6	4	3
Lincoln, Nebr.	20	17	3	-		-	3	Spokane, Wash.	49	27	15	1	2	4	1
Minneapolis, Minn.	84	51	18	10	1	4	1	Tacoma, Wash.	45	25	9	7	3	1	1
Omaha, Nebr.	70	44	20	4	-	2	1								
St. Louis, Mo.	153	96	34	7	7	9	2								
St. Paul. Minn.	70	41	16	6	3	4	2	TOTAL	12,119	7,528	2.910	849	388	442	443
Wichita, Kans.	76	50	17	5	2	2	9								

[^2]$\dagger \dagger$ Toual includes unknown ages.
Bata not available this week. Figures are estimates based on average percent of regional totals.

Food-Borne IIIness - Continued

It is difficult to specify an active dose of marijuana, and equally difficult to quantify exposure through chemical analyses of body fluids. Although sophisticated assays do exist for determining cannabinoid and cannabinoid-metabolite levels in humans, they are not currently available for clinical use.

These 2 episodes of marijuana-associated illness suggest that marijuana might be considered as a toxin when food-borne outbreaks are being investigated.

References

1. CDC. Food-borne marijuana outbreak-Colorado. MMWR 1978;27:404-5.
2. Millman R. Cannabis. In: Beeson PB, McDermott W, Wyngarden JB. Textbook of medicine. 15th ed. Philadelphia: WB Sanders Company 1979:702-3.
3. Jones RT. Human effects: an overview. In: Petersen RC, ed. Marijuana research findings. Rockville, Md.: National Institute on Drug Abuse, 1980;54-75. (DHHS publication; no. [ADM] SO-1001).
4. Jaffe JH. Drug addiction and drug abuse. In: Goodman LS, Gilman A. The pharmacological basis of therapeutics. 5th ed. New York: MacMillan Publishing Co, Inc. 1975:306-9.
5. Nahas GG, Paton WDM, eds. Marijuana: biological effects (Advances in the Biosciences, Vol 22 \& 23), Oxford: Pergamon Press, 1979.

Measles, United States - Weeks 37-40, 1981

In the first 40 weeks of 1981 , a total of 2,696 cases of measles were reported in the United States; this represents a 79\% drop from the 12,957 cases reported in the same period in 1980. During the 4 -week period from September 13 to October 10, 1981, reporting weeks $37-40,125$ cases were reported. These 125 cases occurred in only 1.3% (41) of the nation's 3.144 counties (Figure 1). A measles outbreak among college students and their contacts in Arkansas accounted for almost 13\% of these cases.
FIGURE 1. U.S. counties reporting measles, weeks $37-40$ (September 13-October 10), 1981

Meas/es - Continued

As of October 10, 16 confirmed cases of measles had occurred in an outbreak in White County. Arkansas (Figure 2); 13 patients were students at Harding University, and 3 were contacts of students. The outbreak was traced to four university students who had visited Honduras from August 2 to 16, 1981. The measles immunity status of these 4 students had not been assessed before their trip. None of the 4 had documented evidence of having received live-measles vaccine on or after their first birthday or of having a physician-documented history of measles disease. Two of these students were infected with measles in Honduras and had onset of rash on August 17 and August 24, respectively. The other 2 students, siblings of the second patient, had acquired measles from their sister after returning to the United States. Spread to 9 other students resulted from contact with infected persons in dormitories, classrooms, and recreational settings.

The 3 cases in persons who were not university students resulted from contact with ill students who were seeking medical attention. These cases occurred in a hospital employee, a preschool child, and a pregnant woman. The pregnant woman went into labor, presumably as a result of her measles, and had a premature infant who was otherwise healthy.

The diagnosis of measles was delayed for the first four patients, because they were initially hospitalized for suspected typhoid fever. After the outbreak was reported to the state health department on September 18, state and county health officials rapidly instituted control programs at the university, which has an enrollment of 3,076 students. By September 23, 2,054 people had been vaccinated in voluntary clinics held on campus. Active surveillance has been set up in the county, and aggressive outbreak-control measures are being implemented in connection with new cases.
Reported by E Roberts, RN, K Smith, RN, T Altman, Harding University, C Ross, PHN, White County Health Dept, Searcy, F Turnage, PHN, B Henderson, PHN, C Beets, JP Lofgren, MD, State Epidemiologist, Arkansas Dept of Health, Little Rock; Field Services Div, Epidemiology Program Office, Immunization Div, Center for Prevention Services, CDC.
Editorial Note: Measles transmission continues to occur at very low levels in the United States. In the 4 -week period discussed, 99% of the nation's 3,144 counties reported no measles, suggesting that measles transmission has been interrupted in these counties. During the first 40 weeks (ending October 10) of 1981, 290 (9.2\%) counties in the United States reported measles.

The measles outbreak in Arkansas resulted from importation of measles into the United States. A rising proportion of measles cases in the United States have occurred among Ameri-

FIGURE 2. Reported measles cases, by 3-day intervals, White County, Arkansas, August 1-October 10, 1981

Measles - Continued

cans returning from travel abroad (1). This outbreak raises the question of the need for children and young adults to be adequately protected against measles before traveling abroad (1). It also shows that physicians should consider the diagnosis of measles for persons with a history of recent travel abroad who have febrile illness accompanied by rash.

Participation by college students in vaccination clinics during outbreaks has usually been low, although controlled studies have shown that there is no increased risk of serious side effects from measles vaccination for young adults (2,3). Consequently, the high degree of participation by students in the voluntary vaccination clinics at Harding University is noteworthy.

Several college-based measles outbreaks have been described in recent years (2-4). Continued reporting of outbreaks such as the one discussed above has led the Immunization Practices Advisory Committee to emphasize the need for college officials to strongly consider requiring documented evidence of immunity for entering students (5).

References

1. CDC. Measles importations-United States. MMWR 1981;30:455-6,461-2.
2. CDC. Measles vaccination reactions among college students. MMWR 1980;29:549-51.
3. CDC. Measles and measles vaccine reactions among college students-Wisconsin. WMWNR 1980;29:21-2
4. CDC. Measles-Oregon, California. MMWR 1977;26:161-2.
5. CDC. Rubella-United States, 1977-1980. MMWR 1980;29:378-80.

Recommendation of the Immunization

Practices Advisory Committee (ACIP)

Supplementary Statement on Rabies Vaccine and Serologic Testing

Human diploid cell strain rabies vaccine (HDCV) was licensed in the United States in June 1980. At its meeting on October 15, 1981, the Immunization Practices Advisory Committee (ACIP) reviewed data on seroconversion in persons properly vaccinated with HDCV; the data showed that 100% of vaccinees (510/510) had protective antibody levels following preexposure treatment, and following post-exposure treatment, $99.9 \%(1,299 / 1,300)$ had protective antibody levels. In view of these findings, which corroborate prelicensure data, the ACIP now sees no reason to continue routine serologic testing of persons who receive the recommended pre-exposure or post-exposure treatment regimens of HDCV, i.e., preexposure: 3 intramuscular, $1.0-\mathrm{ml}$ doses on days 0,7 , and 21 or 28; post-exposure: rabies immune globulin plus 5 intramuscular, $1.0-\mathrm{ml}$ doses on days $0,3,7,14$, and 28.

[^3]
ACIP Recommendation - Rabies

Furthermore, the ACIP believes that routine serologic testing is no longer necessary following booster doses of HDCV for persons given the recommended primary HDCV vaccination or those shown to have had an adequate antibody response to primary vaccination with duck embryo vaccine (DEV) or other rabies vaccines.

Serologic testing is still recommended for persons vaccinated with DEV or those whose immune responses might be diminished by drug therapy or for other reasons.
Editorial Note: In accord with the ACIP's conclusion on routine rabies antibody testing, effective November 30, 1981, CDC will no longer test serum for rabies antibody except in persons vaccinated with DEV or suspected of being immunocompromised. Those who have not completed vaccination with HDCV will be advised to do so rather than to submit serum for testing.

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE / CENTERS FOR DISEASE CONTROL ATLANTA, GEORGIA 30333 OFFICIAL BUSINESS

Postage and Fees Pald U.S. Department of HHS HHS 396 Keewhan Chol, Ph.D.

[^0]: -Use of trade names is for identification only and does not imply endorsement by the Public Health Service or the U.S. Department of Health and Human Services.

[^1]: All delayed reports and corrections will be included in the following week's cumulative tolals.

[^2]: - Mortality data in this table are voluntarily reported from 121 cities in the United States, most of which have populations of 100,000 or more. A death is
 reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not included.
 - "Pneumonia and influenza
 tBecause of changes in reporting methods in these 4 Pennsylvania cities, these numbers are partial counts for the current week. Complete counts will be available in 4 to 6 weeks.

[^3]: The Morbidity and Mortality Weekly Report, circulation 96,000, is published by the Centers for Disease Control, Atlanta, Georgia. The data in this report are provisional, based on weekly telegraphs to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the succeeding Friday.

 The editor welcomes accounts of interesting cases, outbreaks, environmental hazards, or other public health problems of current interest to health officials. Send reports to: Attn: Editor, Morbidity and Mortality Weekly Report, Centers for Disease Control, Atlanta, Georgia 30333.

 Send mailing list additions, deletions and address changes to: Attn: Distribution Services, Management Analysis and Services Office, 1-SB-419, Centers for Disease Control, Atlanta, Georgia 30333. When requesting changes be sure to give your former address, including zip code and mailing list code number, or send an old address label.

